

SECURE HOSTING

Technolutions provides all hosting, network, and server

management for Slate in secure, modern datacenters, through

the use of the Amazon Web Services (AWS) cloud. Production

services are hosted in the us-east-1 region in Northern Virginia,

with services duplicated across two availability zones. Each

availability zone consists of one or more discrete datacenters,

each with redundant power, networking, and connectivity,

housed in separate facilities, and physically and operationally

isolated from the other availability zones. Each can take over

from the other in case of an outage. All data and machine

configurations are further replicated to the us-west-2 region in

Oregon for disaster recovery. Institutions based outside of the

United States have the opportunity to locate their data in the ca-

central-1 region in Canada, the eu-west-1 region in Ireland, or

the ap-northeast-1 in Tokyo, Japan. No sensitive data is stored

outside of the institution’s designated region, and content

delivery network servers throughout the world cache static,

non-sensitive resources. Datacenters undergo annual SOC

audits, and no issues have ever been identified from these

audits, nor has there ever been a data or security incident of any

kind.

ENCRYPTION IN TRANSIT

All data is received and transmitted over TLS, using 2048-bit

keys. Due to vulnerabilities with the SSL protocol, no

connections using SSL are supported and only connections over

secure versions of TLS may be initiated. 128-bit asymmetric

encryption is enforced as the minimum, with 256-bit AES

encryption available as the default for supported clients.

Forward secrecy is supported within all modern browsers.

ENCRYPTION AT REST

All data is stored in encrypted databases on encrypted

filesystems in secure datacenters, using 256-bit AES encryption.

SINGLE SIGN-ON

Slate integrates with institutional single sign-on, including CAS,

LDAP / Active Directory, SAML / Shibboleth / AD FS / Azure AD,

and other identity and authentication providers, with

permission- and role-based authorization tables. Technolutions

is a member of InCommon. Slate supports multifactor

authentication.

PERMISSIONS AND ROLES

Slate provides field-level, function-level, and feature-level

security, enabling granular control of access permissions and

rights. An institution can create any number of custom

permissions and roles, each of which may contain any number

of standard or custom permissions. A user may be assigned to

any number of roles and will assume the security permissions

from each.

HIGH PERFORMANCE, HIGH AVAILABILITY

Slate utilizes redundant systems and resources at every level in

the architectural stack. Should Slate become unavailable for any

localized reason, we immediately begin a failover process that

takes approximately 15 seconds to complete. We regularly add

servers and computational capacity to provide real-time data

with ever-increasing performance. Slate typically achieves “five

nines” of availability, with downtime of less than 5 minutes for

the entirety of the calendar year. A transaction enters the

Technolutions network through redundant firewalls and load

balancers, where all non-essential ports are closed and traffic is

evaluated through deep packet inspection. The requests are

answered by nodes in the web cluster, which pass requests to

parameterized procedures through limited-rights accounts to

nodes in the database cluster. The web, worker, and database

clusters do not have publicly-routable addresses, and the web

clusters are only accessible via the load balancers and

application security firewalls. Capacity is regularly evaluated and

added to support continued growth and resource utilization. We

test and verify the redundancy of these systems quarterly and

after major changes.

BUSINESS CONTINUITY AND DISASTER RECOVERY

Technolutions is headquartered in New Haven, Connecticut with

a second office in Portland, Oregon. Each office provides staff

and geographic redundancy, and employees may access tools

remotely via secure, two-factor VPN connections and terminal

servers in the event of limited physical access to our New Haven

or Portland offices.

TECHNICAL DETAILS

COMPREHENSIVE INSURANCE COVERAGE

Technolutions maintains, through Chubb (A.M. Best rated A++

Superior), policies in the amounts of $1,000,000 per occurrence

for comprehensive business liability, $2,000,000 aggregate for

comprehensive business liability, $4,000,000 per occurrence for

excess liability, $1,000,000 per accident for workers’

compensation, $1,000,000 disease policy limit for workers’

compensation, and $7,000,000 for technology services errors

and omissions liability.

ACCESSIBILITY AND COMPLIANCE

Slate maintains compliance with all laws and standards,

including PCI compliance for all financial transactions, NACHA

compliance for all ACH transactions, FERPA compliance for the

protection of student information, GDPR compliance, and

adoption of and adherence to Section 508 ADA accessibility

guidelines, as implemented through the WCAG 2.0 accessibility

guidelines.

SESSION AUTHENTICATION

All requests to Slate resources are routed over HTTPS with a

minimum grade of 128-bits enforced. Any request over HTTP is

automatically redirected to HTTPS, including a browser-based

non-network redirect to HTTPS based upon cached HSTS

information. When a user authenticates with Slate, a new login

entry is created for the user in the database, with a session ID as

a 128-bit UUID, their user ID (also a 128-bit UUID), the IP

address they are logging in from, a machine cookie that is set (to

be able to uniquely identifier a particular computer/browser),

the user agent (browser string), the login date/time, and the

expiration date/time of the credentials (usually 60 minutes).

Slate then sets a session cookie in the browser with the

“HttpOnly” flag set (preventing it from being accessed by client-

side script) along with the “secure” flag (preventing it from

being sent over HTTP). The cookie has the value of the 128-bit

session ID. These cookies are set as session cookies (no

expiration set) and are deleted upon closing the browser. Upon

every request to an authenticated resource, we check the

session ID from the cookie against the persistent machine cookie

and IP address stored, in addition to verifying that the session

has not been expired (such as clicking “logout” which forces

immediate expiration of the ticket in the system, or having the

expiration date/time elapse). Each new authenticated page

request extends the lifetime of the session. These session IDs

are completely unique and cannot be guessed.

TRANSIT LAYER

• Requests over HTTP are redirected to HTTPS.

• HTTP Strict Transport Security headers set to prevent against

HTTPS downgrade attacks.

• Only secure versions of TLS are supported and all versions of

SSL are disabled.

• Request verbs are limited to GET, HEAD, and POST.

• Request content length is limited as appropriate.

• Cache expiration is enforced (“Expires: 0” and “Cache-

Control: private” or “Cache-Control: no-cache”) on all secured

pages.

• Content is compressed using gzip or deflate if supported by

the browser.

• Static content is cached server-side with non-immediate

browser expiration and via edge-servers in content delivery

network utilizing international datacenters for low latency

access all around the world. Sensitive data is never accessed

by or through the content delivery network.

APPLICATION LAYER

• No platform-specific file extensions or headers are used,

helping to obfuscate the application and platform types.

• No source code is published to production servers.

Application code is fully compiled.

• Application code is fully managed, and there is no native

application code which might provide a vector for a buffer

overflow.

• No detailed error messages are ever displayed externally.

• Unhandled exceptions are logged automatically for

evaluation.

• Uploaded files are never committed to web-readable

directories.

• Parameterized procedures are used for all transactions,

eliminating the vector for SQL injection attacks.

• Pages are rendered by building an XML document and

transforming that against an XSL transform, which escapes all

data by default. Under no circumstances is output escaping

ever disabled for user input.

• Sequential identifiers are never used. Only 128-bit UUIDs are

used for primary record identifiers.

• Sessions are maintained by generating a UUID in a login table

and assigning that UUID to a session cookie, and may be

remotely terminated by an authenticated user or

automatically upon session expiration.

• Unnecessary whitespace from all rendered pages is removed,

all CSS are minified, and all Javascript resources are

obfuscated and minified.

• Non-authenticated redirectors require a salted URL hash to

prevent abuse.

• External user accounts are activated using the external user’s

email address and a 9-digit PIN that is transmitted by email, in

addition to the birthdate for verification purposes (optional),

which is not communicated by email. Upon activation, the

external user must set a password of his/her choosing. A

salted hash is stored instead of plaintext passwords.

• Administrative users are authenticated against institutional

SSO. Passwords are never stored.

STORAGE LAYER

• All implementations of Slate use the same database schema

that is centrally developed, tested, and administered.

• Each Slate instance has its own discrete database, and no

institutional data is ever commingled with data from other

institutions or stored in a database that could be accessed by

users from another institution.

• Databases run with full transaction logging. Transaction logs

are backed up every 3 hours and are held for at least 60 days,

providing point-in-time restores for that duration. Full

TECHNICAL DETAILS

backups are taken weekly and are held for at least 60 days.

The outside duration of the Recovery Point Objective is 3

hours, and the outside duration of the Recovery Time

Objective is 12 hours (the RTO for most issues would be

measured in seconds), depending upon the severity of the

issue.

• Document stores are versioned and all versions are

automatically replicated throughout the us-east-1 region,

with near real-time replication to the us-west-2 region.

INFRASTRUCTURE LAYER

• Administrator-level permissions are closely controlled, and no

generic accounts are ever permitted for server-level access.

• Audit logs are held for at least 1 year and are replicated

nightly to off-site storage.

• Servers run recent versions of their operating systems

(Microsoft Windows Server 2019) and the latest versions of

the database servers (Microsoft SQL Server 2019).

• Servers are patched regularly every month and as necessary

for critical 0-day exploits.

• Secure connections are brokered through Windows Domain

accounts using NTLM authentications, and SQL

authentication is never used or permitted, nor are passwords

permitted to be stored within application code.

• Forest and domains run at the highest functional levels, with

all insecure protocols and encryption algorithms disabled.

• Services run under limited-access accounts.

• No servers have publicly-routable addresses, with all public

IPs held by the firewalls and load balancers and only specific

ports routed to private IPs.

• Remote Desktop access is limited to the connections from

within the VPN.

• VPN access requires two-factor authentication, where one

factor is the password followed by a token, and the second

factor is human-approved response from an authorized

mobile phone.

• Group policies are employed to limit wireless and remote

storage access.

DATA INTEGRATION AND MIGRATION

Slate supports the bi-directional transfer of data between Slate

and external systems, including student information systems

such as PeopleSoft, Banner, Colleague, and Jenzabar, financial

aid systems such as PowerFAIDS, search lists and score data

files, and homegrown systems. Data integrations are achieved

through several different mechanisms, enumerated below:

Data Export (Slate to an external system)

Batched exports These are built in the query tool and involve the

generation of flat files (fixed-width, delimited, XML, JSON, etc.)

on a scheduled frequency. Any code and value translations can

be configured within Slate but outside of the query, so the query

can be stable and immutable even when new entry terms,

majors, and other code changes are introduced. This also

ensures that the process on the campus system (e.g., SIS, ERP,

etc.) side remains stable year-over-year, too. These exports can

be cumulative, incremental, or differential. This differential

option uses notification queues to track which records have

changed since the export was last run, so full rows are returned

for only the students for whom there has been some change to

their record. This is typically the most appropriate option for

exports to a campus system. The exports can be scheduled to

occur on a daily frequency (or more frequently, as desired) and

can be run on-demand for those instances throughout the year

where you may need to update the campus system more

immediately after adding/changing a batch of decisions. Exports

can be pushed out to our SFTP servers or to a remote SFTP

server. For exports to a campus system, we generally advocate

for the use of batched exports, using delimited differential files,

on a nightly overnight frequency, and to our SFTP server, where

a school can then poll the /outgoing/ directory periodically to

pull down and load any files. There are several major benefits to

the batched export option. First, if exporting to our own SFTP

server, we can ensure that it remains online/operational during

the export. Second, there is the inherent logging of all exports

that occurs just by preserving/archiving the exported files. This

provides a great resource for troubleshooting if ever necessary.

Third, the exports are scheduled to occur within a delivery

window, but the particular execution time within that window

(e.g., 2:00am until 4:00am) can be moved around based upon

server maintenance activity and load. Fourth, we can provide

automated email notifications upon successful, late, and/or

failed generation and delivery of scheduled exports. Fifth, if

using a delimited file structure, depending upon the capabilities

of your system, new fields may be added to the export without it

breaking anything on the campus system end.

Web services The same query that would be built for a batched

export can be made available as a web service at any time

simply by enabling web services on the query. If a specific XML

structure was desired, there would be some modifications to the

query, but they would generally be reasonably minor. When

coupled with notification queues, these would enable the school

to poll the web service on a frequency that they define and pull

down just the new/changed records each time. Web services are

a fine and production-appropriate option, but they usually don’t

offer enough additional business value to outweigh the benefits

offered by batched exports. Typically, the data is not so volatile

and the business need to see that data reproduced in a campus

system so great that frequent web service polling would even be

necessary, so a batched export usually achieves all the business

process requirements. Web services are also much more

difficult to troubleshoot, should the need arise, since the

request and response are transient.

Other options Batched exports can be utilized for a nightly feed

and coupled with web services for an update/incremental feed

of perhaps a limited set of data points, individual records could

be requested using APIs or custom web services, or we could

post data to a remote web service, so there exists an array of

additional options, but 95% of all data integrations typically use

the batched file approach.

TECHNICAL DETAILS

Data Import (from an external system into Slate)

Batched imports and data migrations These are essentially the

reverse of the batched export process, but configured and

managed using different tools within Slate. Most frequently, the

school delivers files to import to an /incoming/ directory on our

SFTP server, which we poll frequently (at least once every 15

minutes) and load any files matching a specified filename mask.

We can poll a remote SFTP server, too, but to the point of SFTP

server availability, since we can ensure that our servers remain

highly available, the experience is usually most reliable when

using our infrastructure. These files can be delimited, fixed

width, XML, etc., and we typically recommend that delimited

files with column headers be used, since you can add/remove

columns at any time without breaking the import process within

Slate. This allows for asynchronous changes to the data feed

specifications. The files are routed into our Upload Dataset tool,

where the format can be predefined to handle all value and

code translations, ensuring that the year-over-year changes to

accommodate new fields or values is straightforward and can be

handled by non-technical end users. This same Upload Dataset

tool is used for importing data from search lists, score data files,

and historical data migrations.

Transactional web services Web services can be created within

Slate to update individual properties on individual records.

These are appropriate for purely transactional events, but since

they would execute synchronously, there could be some record

locking while changes are committed. These also wouldn’t be

appropriate under high volume, since thousands of writes is not

nearly as efficient as a single batched write to thousands of

records. These typically require custom SQL, so their

maintainability is not as straightforward.

Batched web services (synchronous) Like the transactional web

services, an XML post could be submitted containing updates to

be made to a lot of records. Since these would be executing

synchronously for a group of records, the likelihood of record

locking as changes are made and committed is greatly increased.

These also typically require custom SQL, so maintainability is

potentially an issue here.

• Batched web services (deferred) This option provides a web

service way to post files into Slate that are then processed by

the Upload Dataset mechanism, just as if the files were

transferred via SFTP. These could include XML posts but can

also include delimited data. Since the updates are processed

through our Upload Dataset mechanism, the changes can be

queued, batched, and run in the most efficient manner

possible which will minimize or eliminate any potential for

observable record locking.

Remote web services (scheduled) Slate can also consume data

from remote web services and, like pulling down a file from a

remote SFTP server, can route the data into the Upload Dataset

import system. There is a time and place for this option, but it’s

not frequently utilized.

Document Import

Document Imports should occur over SFTP, since a ZIP archive

containing thousands of PDFs could potentially be quite large.

Files are typically sent using a DIP file approach, wherein a ZIP

archive is generated containing PDFs/TIFFs of the documents to

be imported along with an index file containing the filename of

each document and any associated metadata parameters (an SIS

ID and document type, for example). Slate can then extract the

documents and index file and import the documents onto the

appropriate student records. Slate can also extract metadata

from within a filename, so you could have files with an SIS ID

and document code in the filename and obviate the need for an

index file, but usually the DIP approach is best here. We always

recommend encapsulating all of these documents into a ZIP file,

since SFTP is much more efficient with the transmission of a

single file (e.g., a ZIP archive) instead of with the transmission of

thousands of individual files. We also prefer PDFs to TIFFs, since

a digital PDF of non-scanned data would be a fraction of the size

of a TIFF, since a TIFF is a rasterized/bitmapped image that

won’t contain any digital text content and thus cannot be

enlarged beyond the original resolution without a loss of fidelity.

Document Export

Like document imports, Slate also supports the scheduled and

on-demand export of any set of document types for any

population of records. These are typically delivered in a ZIP

archive to our SFTP servers.

Direct SQL Access

We support direct SQL access from workstations/servers at the

institution into their Slate database, but this is for ad hoc use

only and is not intended for data integrations. This is for a few

reasons. First, if the data integration exists entirely outside of

Slate, Technolutions will not be aware of it and will not be able

to proactively address the potential effects of schema changes.

Second, direct SQL access is not schedulable on our end since

the queries are being remotely initiated. Third, a poorly written

SQL query could over-consume resources and create

performance issues that are much more difficult to troubleshoot

without visibility into what or how something was being used.

Fourth, the access is all or nothing, so any user with direct SQL

access has complete read-only access to the database.

Additional information is available upon request.

Technolutions New Haven

157 Church Street, Fl 22

New Haven, CT 06510

203.404.4835

Technolutions Portland

1211 SW 5th Avenue, Ste 2600

Portland, OR 97204

503.765.7500

www.technolutions.com

